
Diagnosis of Single Transition Faults in Communicating
Finite State Machines

Abderrazak Ghedamsi, Gregor v. Bochmann and Rachida Dssouli

Universitd de Montrdal, DIRO, C.P.6128, Succ. A, Montreal, Canada, H3C 357

Abstract

In this paper, we propose a generalized diagnostic
algorithm for the case where more than one fault (output
or transfer) may be present in one of the transitions of a
deterministic system represented by a set of
communicating finite state machines (CFSMs). Such an
algorithm localizes the faulty transition in the distributed
system once the fault has been detected. It generates, if
necessary, additional diagnostic test cases which depend on
the observed symptoms and which permit the location of
the detected faults. The algorithm guarantees the correct
diagnosis of any single or double faults (output andlor
transfer) in at most one of the transitions of a
deterministic system which is represented by a set of
communicating FSMs. A simple example is used to
demonstrate the functioning of the different steps of the
proposed diagnostic algorithm.

1. Introduction

Testing is an important step in the development cycle
of any system (i.e. software, communication protocol or
hardware). A lot of research work has been directed
towards such tests [4, 3, 16, 18, 14, 2, 81. At the same
time, in the software domain where a system may be
represented by an FSM model, very little work has been
done for diagnostic and fault localization problems [6,
191. Diagnostic is a well documented subject in other
areas such as Artificial Intelligence (AI), complex
mechanical systems and medicine. Therefore, most of the
concepts and terms used in this paper are imported from
those domains.

In model-based diagnostics [l l , 153, we assume the
availability of the real system (e.g., implementation)
which can be observed, and its model (e.g., specification)
from which predictions can be made about its behavior. It
is necessary to know how the system or the machine
under test is supposed to work in order to be able to know
why it is not working correctly.

Often the specification of a model-based system is
described in a structured manner. Therefore, a system is
seen as a set of components connected to each other in a
specific way. In order to diagnose this kind of systems,

models and their corresponding systems are assumed to
have the same components and the same structure.
Observations of inputs and outputs show how the
system is behaving, while expectations, derived from
its model, tell us how it is supposed to behave. The
differences between expectations and observations, which
are called "symptoms", hint the existence of one or
several differences between the model and its system. In
order to explain the observed symptoms, a diagnostic
process should be initiated. It consists mainly of
performing the following two tasks: the generation of
candidates and the discrimination between candidates [1 11.
Task 1: Generation of candidates: This process
uses the identified symptoms and the model to deduce
some diagnostic candidates. Each diagnostic candidate
is defined to be a minimal difference, between the model
and its system, capable of explaining all symptoms. It
indicates the failure of one or several components in the
system.
Task 2: Discrimination between candidates:
Once the step of candidate generation terminates, we often
end up with a huge number of diagnostic candidates. To
reduce their number, two main techniques are used. The
first one consists in the selection of some additional new
tests called "distinguishing tests" [5]. The second
technique consists of introducing new observation points
in the implementation under investigation and executing
the same tests again.

We recall that in general, the diagnostic problem is a
very complicated task, specially for diagnosing
complicated systems such as distributed systems. This
complexity makes the achievement of the candidate
generation and discrimination tasks harder. In order to
solve this problem, the use of fault models is necessary
(see for instance [l]). Given the hierarchical system
description, corresponding fault models may be
established using the different levels of abstraction. Some
of these fault models give all possible failures of each
component in the system. They help to ease the
diagnostic procedure, specially by reducing the number of
the different cases which have to be considered, and hence,
in reducing the number of diagnoses to be generated. It is
important to note that different fault models may be used
during both tasks of the diagnostic process. In the
simplest case and for high level abstractions, the

157

0-8186-3770-6193 $3.00 0 1993 IEEE

following fault model, based on the system
decomposition into components and connections, may
apply during the candidate generation phase. Each
component may either be faulty or operating correctly
[ll]. On the other hand, and for lower level abstractions
(i.e. gates or transitions levels), different uses of precise
and more concrete fault models, are recorded in different
areas such as the diagnostics of hardware circuits (e.g.,
stuck at 0/1 fault models) [123. These fault models may
be used during the phase of discrimination between
candidates. In the software area and more precisely for
FSMs, another simple fault model, based on transfer and
output faults in transitions, is used for diagnosing
implementations modeled by FSMs [2, 19,6].

In this paper, we propose a diagnostic algorithm for
deterministic systems represented by CFSMs[9, 101. In
such a model, transitions are considered as components in
the above described general model, while states have the
function of connecting these components. We solve the
diagnostic problem for the single transition faults (output
and/or transfer) hypothesis, which means that the
implementation under test is allowed to have up to two
(output and/or transfer) faults in at most one transition.
The algorithm in this paper is a generalization to the
algorithms presented in [6, 71. It extends the class of
systems to be diagnosed from systems represented by
single FSMs to systems represented by N-CFSMs, where
N 2 2. It also extends the assumed fault model from a
single (an output or a transfer but not both) fault to single
transition (an output and/or a transfer) faults. The new
proposed algorithm will have the ability of localizing the
faults once an error is detected by one or several test cases,
which may be generated by one of the existing test
selection methods [131.

The fact that in some cases it is possible to transform a
set of CFSMs into an equivalent single machine with an
exponential algorithm, is not a good reason to stop us
from trying to solve the diagnostic question for systems
of CFSMs. The equivalent machine is, in general, too big
and is less convenient to handle. To avoid the high
transformation cost and the state explosion problem in the
resulting machine, we propose to solve the diagnostic
problem directly for the CFSMs model. Compared with
the case of single FSM diagnostics, more work needs to
be done to diagnose CFSMs. This becomes evident in
Section 3, where a set of transitions suspected of having
output faults has to be identified. Such a set was not
needed in the case of single FSMs.

The remainder of the paper is organized as
follows. In Section 2, the model of communicating finite
state machines and a corresponding fault model are
introduced. Section 3 includes all the details of an
approach for the diagnostic of deterministic system
implementations represented by the CFSMs model. In
Section 4, an application example explaining the steps of
the proposed diagnostic algorithm is provided. Section 5,
finally, contains a concluding discussion and points for
future research.

2. Communicating Finite State
Machines

2.1 Principles of the CFSMs model

A system of communicating finite state
machines with distributed ports consists of a finite
number of deterministic finite state machines which
communicate with each other through input queues in
addition to their communication with the environment
through their respective external ports.
Definition 1: A deterministic FSM M i (i = 1,
2, ... N) in a system of N CFSMs can be represented by
a quintuple (Si. Ii, Oi, NextStaFunci, OutFunci) where :
N Number of FSMs in the system
Si : Set of states of Mi. It includes the initial state si0
Ii : Set of input symbols. It includes the rest input (r)
Oi : Set of output symbols. It includes the null output (-)
NextStaFunci : Next-state function, Si x Ii --> Si
OutFunci : Output function, Si x Ii --> Yi.

For the rest of the paper, we assume that each machine
Mi in the distributed system has a separate external port,
Pi, through which input and output symbols are
communicated between the machine and the external
world. In addition, each machine Mi has N-1 internal
input queues: qi<l, qi<li .-.,qi<i-1, qi<i+l, qi<N,
where qi<j represents the internal input queue for Mi
receiving its symbols from the machine M,.

For each deterministic FSM in a system of CFSMs,
we distinguish two types of transitions. The first type is
called "external-output transitions" or simply
"transitions". It is the kind of transitions which deliver
their outputs to a corresponding external port. The second
type is called "internal-output transitions". They
are those transitions which communicate their outputs to
another machine, instead of communicating them to the
external port of the corresponding machine. In this paper,
we assume that each machine of the CFSMs has an input
alphabet composed of two distinct subsets of inputs. The
first subset I E O , called "inputs for external
outputs", contains input symbols which can be applied
to only external-output transitions. The second set 110.
called "inputs for internal outputs", contains
inputs which can be applied only to internal-output
transitions.

Each time an input symbol is applied to a machine in
the system, we assume that enough time is given to
observe its effect, which will be an output interaction in
one of the existing external ports. Hence, the application
of the next external input should be preceded by the
observation of the output implied by the previous input.
Therefore, only one message will be circulating in the
whole system at any time. Such an assumption, which
we call "the synchronization assumption",
guarantees the deterministic behavior of the global
system. Related issues to the synchronization problem are

158

discussed in more details in [17]. With such an
assumption, only one global sequence of output symbols
is expected for a given global sequence of input symbols
(i.e., a mixture of input symbols belonging to the
different machines). A possible way of implementing
such a feature, is by providing some coordinating
procedures between the different external ports of the
system.

From the above described model, it is obvious that the
execution of an internal-output transition in one machine
implies the execution of another transition in a second
machine. If the later transition is also an internal-output
one, a third transition will be executed in a third machine,
before any output is observed in any of the ports. This
process will continue until an extemal-output transition is
invoked. In such a case, the output of that last transition
will be observed in the extemal port of the machine to
which that transition belongs. Because of the complexity
of the diagnostic process, we restrict ourselves to the
study of systems where the execution of an internal-
output transition in one machine will only imply the
execution of an external-output transition in another
machine. In other words, the set of output symbols of
internal-output transitions in one machine should be a
subset in the set of inputs for extemal-output transitions
in the other machines. Hence, for a pair (Internal-output
transition, external-output transition) of transitions
provoked by a single intemal input, the output of the first
transition is hidden (since it is communicated to an
intemal queue of one the other machines in the system
instead of the external port), while the output of the
second one must be observable in the extemal port of the
receiving machine.

We assume that the input alphabet Ii, of a machine Mi
(i = 1.2, ..., N) in a system of CFSMs, is formed by two
subsets (i.e., Ii = IEOi U 1101, where IEOi n IIOi
= 0). The first subset I E O i represents the input
symbols, for external-output transitions of Mi, which
might be applied from the corresponding external port Pi.
IEOi includes a subset "IEOqi<I U IEOqi,2 U ...
U IEOqici-l U IEOqi,i+l U ... U IEOqi,N"
containing input symbols, for some external-output
transitions, which might be received from the different
queues of Mi: qi<l$ qi<l, .-4i<i-1, qi<i+l, ..., qi<N
instead of the external port Pi. The second subset IIOj
represents input symbols for the internal-output
transitions of Mi. It is formed by different subsets ("IIOi

I I O i > i + l U ... U I I O ~ > N " , where IIOi,x n
IIOi,,, = 0, i # X,Y and x # Y). Each subset IIOi>j, j
i. contains inputs for internal output transitions of Mi
which communicate their outputs to the machine Mj.
These input symbols are only applied from the extemal

Similarly, the set of output symbols Oi of the machine
Mi can be seen as the union of two subsets (i.e., Oi =

= IIOj>l U I I O j > 2 U ... U I I O i > i - l U

port Pi of Mi.

OEOi U OIOj). The first subset OEOi is formed by the
output symbols generated by external-output transitions
of Mi and addressed to Mi's external port, Pi. The second

OIOj>i- l U OIOj>i+l U ... U O I O ~ > N " , is
formed by output symbols generated by internal-output
transitions of Mi and addressed to the input queues: q1<i,
9249 ..., qi-l<iv qi+l<i, ..., qN<i of machines MI. M2,
..., Mi-1, Mi+l, ..., MN, respectively. It is important to
note that the input subset IEOqi<j of machine Mi is equal
to the output subset OIOj>i of machine Mj. From the
implementation point of view, the input symbols of the
subset IEOqi<j of the machine Mi (if received from the
queue qi<j) and the output symbols of the subset OIOj>i
of a machine Mj are hidden and can not be observed by an
extemal observer.

A graphic representation of an CFSMs example, in the
form of state transition diagram, is given in Figure
1 where a system of three communicating machines with
three distributed ports is presented. Each machine Mi in
the system has an external port for both external input and
output interactions and an input queue for each machine
Mj (i f i) which receives messages sent by Mj. In each
machine Mi of the system, we show external-output
transitions in simple lines, one group of internal
transitions (with outputs designated to one machine) in
continued bold lines, while the other group (with outputs
designated to the other machine) are shown in dashed bold
lines.

For the example in Figure 1, we have the following
finite sets of inputs and outputs for the three machines in
the system:
IEOl= (a, bj; IEOql,2 = (a, bl; IEOql,3 = (a, bl;
II01>2 = (c, d); IIO1>3 = (e, f) ==>IO1 = (c, d, e, f)
I1 = IEOl U I101 ==>
OEOl= [c', d) ;
0101,2 = (C', d) ; OIO1>3 = [C', d') => 0101 = (C', d')
0 1 = OEOl U 0101 ==> 01 = (c', d')
IE02 = [c', d', 0, PI; IEOq2<1 = {c', d l ; IEOq2,3 = (0,

PI:
I IOb 1 = (9, r) ; IIO2>3 = (s, t) =>I102 = (9, r, s, t)
I2 = IE02 U I102 ==> I2 = (c', d', 0, p, q, r, s, t)
OE% = (a, b);
0102,1 = (a, b]; OIO2>3 = {U, v) ==>0102 = (a, b, U,
V I
0 2 = OEO2 U 0102 ==> 0 2 = (a, b, U, v)
IE03 = (C', d'. U, VI; IEOq3,1 = (c', d); IEOq3,2 = (U,

VI
1103>1 = {W, x); IIO3>2= (Y, Z) =>IIO3 = (w, X, Y,Z)

OEO3 = [a, b) :

subset, (" O I O i = OIOi>l U OIOi>2 U ... U

I1 = {a, b, c, d, e, f)

I3 = IE03 U IIO3 ==> I3 = (c', d', U, V, W, X, Y, Z)

159

P1 P,
11= (a, b,c, 01= { c', d)

' L

t"9: wfa

0 3 = (a, b, 0, PI

Figure 1: A state transition diagram for a three Communicating Finite State Machines

oIO3>1= {a, b); OIO3>2 = (0, p) ==> 0103 = (a, b, 0,
PI
0 3 = OE03 U OIO3 ==> 0 3 = (a, b, 0, p)

2.2 The CFSMs fault model

The CFSMs fault model is based on faults made on
labeled transitions of the machines. Some of these faults,
which are essential for the CFSM-based diagnostic
approach discussed in Section 3, are defined as follows:
Definition 2: Output fault: We say that a transition
has an output fault if, for the corresponding state and
received input, the implementation provides an output
different from the one specified by the output function.

An implementation has a single output fault if,
one and only one of its transitions has an output fault.
Definition 3: Transfer fault: We say that a
transition has a transfer fault if, for the corresponding
state and received input, the implementation enters a
different state than specified by the Next-state function.

An implementation has a single transfer fault if,
one and only one of its transitions has a transfer fault.

In the CFSMs model defined in the above subsection,
an output is considered to be composed of two
components: the message type and the address to which
that message is destined (e.g., the environment queue or
another machine queue). Output faults may occur in either
component. For our diagnostic approach presented in the
following section, we assume the following fault model:
the implementation under test (IUT) may have a n
output fault, where the fault can occur only in the
message type component and not in the address
component, and/or a transfer fault in at most one
transition in one of its machines.

3. The diagnostic approach

In this section, we present a diagnostic algorithm for
deterministic systems represented by CFSMs. Such an
algorithm consists of diagnosing (with respect to its
specification CFSMs) an IUT CFSMs for possible faulty
transitions. Its main purpose is to identify the faulty
transition and to determine the type of its faults (i.e.,
output and/or transfer). This work is mainly executed

160

within Step 5 and Step 6 of the following algorithm. In
particular, Step 5 might end up with different diagnostic
candidates. In such a case, additional diagnostic tests
should be selected in Step 6, in order to be able to isolate
the faulty transition and more precisely to know to which
state (in case of a transfer fault) that transition has
transfeared.
ALGORITHM:
Step 1: Generation of expected outputs

We assume that a test suite "TS" is given. The test
suite consists of a number of test cases which are
sequences of input symbols. We write TS = (tcl; ...;
tcp), where each tci is a test case.

If a test case tci consists of mi inputs:
iP i,l,ii,2 *P ,..., fmi, the corresponding sequence of expected

outputs is written as: Oi = O ! , ~ , O ~ , ~ ,..., , where p
and g are ports (i.e. p, g E (1,2, ..., N): external ports in
the system) through which interactions get applied or
observed and otj is expected after input 'Ej. In other
words, the input symbols in the test cases and their
corresponding outputs can be applied and observed in
different extemal ports. It is important to note that the
application of an input symbol in a test case might imply
the execution of one or two transitions in both machines,
depending on whether that input is for an external or an
intemal output.
Step 2: Execution of test cases

Application of the test suite to the JUT. For each test
case t i , a corresponding output sequence is observed in
the ports of the IUT. It is written as: 6i =

Definition 4: The transition T i j of the specification
machine Mk where the first symptom (o!,~ # 8 t) in test
case tCi has been observed, is called a symptom
transition. If we have the same symptom transition for
all test cases first symptoms, that transition is called the
unique symptom transition (ust). The observed
output generated by the ust, is called the unique
symptom output (uso).
Step 3: Generation of symptoms

Compare observed outputs with expected ones and
identify all symptoms. Any difference (of,j # tfj)
represents a symptom. The faulty output corresponding
to a symptom is called a symptom output.

Note: In order to continue the diagnostic process,
different approaches might be used depending on the
assumed fault model. In the following, we make the
assumption that the IUT might have at most one
faulty transition with an output and/or a
transfer fault.
Step 4: Generation of conflict sets
Algorithm: For each test case tci with symptoms and

for each machine Mi in the system, determine its

8:,1,6f,2...,6i,mi. g

corresponding conflict set. A conflict set for a given
test case is defined to be the set of transitions which are
supposed to participate (through their execution) in the
generation of the symptom outputs in t i . The conflict set
for a machine M1 is formed by all transitions executed in
the M1 specification when the corresponding test case is
applied. No transitions, executed after the observation of
the first symptom in tci, will be included in the
corresponding conflict set of MI. More formally, we
suppose that the following two output sequences (the first
is expected and the second is observed) correspond to the
test case, "tci = R, i$, i[,, f 3 , ..., f m ,

i[m+l,...,iP 11, with one or more symptoms: 1,n
oi = of, 14290!,3,. - , ~ f , ~ , o [~ + l , - - SO!,,
6i = 0~,1.0~,2.0k3 , . . . , ~ ~ , ~ , ~ t ~ + l , . . , ~ i , ~ 8

where(~!,,+~ e> 6tm+l) is a symptom. The conflict
set for the machine M1 is formed by the projection on the
transitions of M1 which belong to the specification sub-
sequence of transitions which corresponds to the input
subsequence "iy, 1, iz,, f 3 , ..., f m , i[m+l't.

Note: The flag is set to true if If (O~,~+,,..,O:,~ c >

Step 5: Generation of diagnostic candidates and
their diagnoses

Diagnostic candidates are transitions which are
suspected to be faulty. Therefore, each one of them should
belong to each of the conflict sets generated in the last
step. It also has to be consistent with all observations in
all initially given test cases.
Step 5A: Generation of initial tentative
candidate sets
Algorithm: For each machine Mi in the system, the
initial tentative candidate set "ITCi" will be formed by
the intersection of all its conflict sets. Each element
Tk in ITC' represents a tentative candidate transition
(with an output and/or a transfer fault) which may explain
all symptoms.
S t e p 5B: The F T C , the E n d s t a t e s , the

outputs, and the statout sets
Algorithm: For each generated initial tentative candidate
set ITCi, if there is a unique symptom transition llustill,
it will be contained in the ITCi (i.e, see definition 4). In
that case, we split the ITCi.into the set "usfseti1', which
will initially contain the ust', and the set of final tentative
candidates for transitions with transfer faults "FTCtri",
which will contain the rest of the transitions in ITCi.
Otherwise, the full ITCi set forms the FTCtri set. A third
set, called the final tentative candidate set for intemal-
output transitions with possibly only outpyt faults or
both output and transfer faults, "FTCCO~" , will be

6;,m+2.. . ,6;,,).

161

else
outputs[Tk] := 0;

{outputs[Tk] is the set of all faulty outputs Tk mighl
generate}

Forall2 o E OIOi>j and o # Output(Tk) Do
calouts (Tk , 0, outputs)

ENDForalM
, ENDForall1

Procedure ustprocessing (ustseti, flag)
If ((usbeti # 0) and flag) Then

{statout(psti) is the set of all couples, (state, usoi), of
faults ustl might have}

statout(ust') := 0
processtate&out(usti, i, usoi, statout)

calouts (ust', uso1, outputs)

Else If (usbeti # 0) Then
outputs(usti) . . := 0

Procedure processtate&out(cand, i, 0, statout)
Fora111 s E Si and s f NextState(cand) Do

flagl := true
Fora112 tCm E TS DO

[if in ik,n we have p = i, or i&,n is an internal inpul
hen Tg,, is assigned the corresponding transition of Mi
itherwise, it is null}

Forall3 iE,n E tcm DO
If (TL,, = m d) Then

[let the ending state of TL,, in the specification be s}

[let the output of TL,, in the specification be 0)
NextState'(Tg,.,) := s;

Output"(TPm,n) := o
Apply the test case tcm to the modified specificatior
If (newly set of expected output sequences c> set o

3bserved outputs) Then flag1 := false; exit
EndForall3

EndForall2
IF (flag1 = true) Then
statout(cand) := statout(Cand) U { [s,o]}

EndForalll

Procedure calouts (cand, 0, outputs)
flagl := true
Ford11 tcm E TS DO

Fora112 ik,, E tcm DO
IF (TL,, = cmd) THEN

Output'(T$,,) = 0;
Apply the test case tcm to the modified specification

IF (newly expected outputs Q observed outputs)
THEN flagl := false; exit
ENDForall2

ENDForall 1
IF (flagl = true) THEN

outputs(cand) := outputs(cand) U (0)

For each transition Tk in the FTCtris (i = 1, 2, ..., N),
we compute the set of all faulty transfer states called
"EndStates(Tk)", to which Tk might transfer. For
each transition, we consider all states in the machine Mi,
with the exception of the expected Nextstate of Tk, one at

162

a time. For each state s under consideration, s will be
included in EndStates(Tk), if under the assumption that s
is the Nextstate of Tk, the expected and observed outputs
re equal for all succeeding transitions in all test cases.
'rocedurefindendngstates (FTCtr');
~oral l l ~k in mctr i DO

Tk is the k-th transition in FTCtri 1
EndStates(Tk) := 0

EndStales(Tk) is the set of all states to which Tk migh
ransfer }

Forall2 state s E Si and s # NextStute(Tk) Do
flagl .- .- true
Fora113 tcm E TS DO

Forall4 ik,n E tcm Do

if in i i , n we have p = i, or ik,n is an internal inpul
hen TL,n is assigned the corresponding transition of Mj
Itherwise, it is null}

IF (Tg,n = Tk) THEN
NextState'(Tg,n) = s;

Apply the test case tcm to the modified specificatior
IF (newly expected outputs o observed outputs

ENDForall3
IF (flagl = true) THEN

THEN flagl := false; exit
ENDForal 14

EndStates(Tk) := EndStutes(Tk) U { s}
ENDForall2

ENDForall 1
itep 5C: Identification of diagnostic

candidates and generation of diagnoses
Algorithm: In this step we remove all correct (i.e.
transitions with empty Endstates, empty statout and
empty outputs) transitions from the final tentative
candidate sets. A! remaining transitions in an FTCtr' set
form a "DCtrl" set (if not empty) of diagnostic
candidates with transfer faults in machine Mi. For each
transition Tk in the DCtris (i = 1,2, ..., N) and for each
state Sik in the set EndStates(Tk), a diagnose, stating that
Tk might transfer U, state s&, is generated. If sfutout sets
are not empty, we generate corresponding diaposes which
suspect the remaining transitions in "DCco*" sets and
the ustset' (if not empty), for having both output and
transfer faults. If outputs sets are not empty, we generate
corresponding diagnose? which suspect the remaining
transitions in "DCcol" sets and the ustsetl (if not
empty) for having only output faults.
Step 6: Additional diagnostic tests

Depending on the results of the previous steps, the
following different possibilities might be present.
Case 1: One of the ustsetis contains the usti transition
with a corresponding singleton outputs set, the DCtris

and the DCcois (i = 1, 2, ..., N) are all empty. In such a
case, the usti is the faulty transition with the output fault
usoi and no further diagnostic tests are required.
Case 2: One of the ustsetis contains the usti transition
with a corresponding singleton statout set, the DCtris and
the DCco's (i = 1,2, ..., N) are empty. In such a cay, the
usti is the faulty transition with the output fault USO' and
the transfer fault to the state belonging to the only
element of statout. No further diagnostic tests are required.
Case 3: The ustset's are empty and all of the DCtrls and
the DCCO~S (i = 1,2, ..., N) are empty, except one of the
DCtris (DCcois) which is a singleton with a
corresponding singleton Endstates set (a corresponding
singleton outputs set or a singleton statout set). In this
case, the only transition of DCtrl (NCO') has a transfer
fault to the state in E n d s t a t e s (a faulty output
corresponding the only element in outputs or both an
output and a transfer faults corresponding to the only
element in statout). No further tests are required.
Case 4: The ustsetis are empty and one or more of the
other sets has more than one element. Therefore, any
element of the DCtris or the DCco's (i = 1, 2, ..., N)
might be the faulty transition. In such a case, we should
process the elements of these sets in order to derive further
tests with the purpose of identifying the faulty transition
and localizing the exact faults.
Algorithm for Case 4:
Step (a): For each transition T k in the DCtris,
additional test cases have to be selected and executed, in
order to be able to know exactly to which state it
transfers. These test cases should have the ability of
distinguishing between the different states contained in the
corresponding ending state set EndStafes(Tk) and possibly
the correct ending state of the transition. Therefore, a
"limited characterization set" Wk has to be
computed for the states in EndStutes(Tk) and the correct
state. It is different from the characterization set defined in
[2], since it concerns only a subset of states rather than
the whole set of states in the machine. It is formed by
sequences of inputs such that if applied to the machine in
one of the states in EndStates(Tk), the produced outputs
will be different from the outputs obtained if the same
input sequences were applied to the machine in any other
state of EndStutes(T9 or the correct state. Each additional
test case is a concatenation of an input sequence, called
transfer sequence, required to take the machine from its
initial state to the starting state of Tk, the input for Tk
and a sequence of inputs from the Wk.
Step (b): For the internal-output transitions in the
DCcois, a similar approach to Step (a) is used. If the
statout set is not empty, two groups of additional tests
will be needed for each transition Tk in DCcol. The first
group concerns the ending state of Tk and can be found
using the algorithm of Step (a), while the second group

163

concerns the output of Tk and can be found using the
present algorithm. If the outputs set is not empty, only
one group of additional tests will be needed for each
transition Tk in DCcol. This group concerns the output
of Tk and can also be found using the present algorithm.
An additional test for finding the output of a transition Tk
in DCcoi is a concatenation of an input sequence, called
transfer sequence, required to take the machine Mi from its
initial state to the starting state of Tk, the input for Tk
and a sequence of inputs from "the distinguishing
set" Uk. The characteristic of the sequences in Uk is
that once incorporated in the additional test cases, they
will have the ability of distinguishing between the
different possible outputs which might be generated by Tk
and communicated to the machine Mj. In other words, if
Mj in a state s receives an input symbol x (i.e. the output
of Tk) from Mi, it will execute a precise corresponding
transition t and will reach a state s', then, a sequence from
Uk will be applied to Mj in state s'. If a faulty input
symbol x' (instead of x) is received by Mj in state s, a
different transition t' will be executed and possibly a
different output will be generated and a different state will
be reached. Therefore, the different sequences of uk will
identify such an anomaly. Consequently, if the
application of these additional tests generates the expected
outputs, the transition Tk is confirmed to do not have an
output fault. If at the Same time Tk is confirmed not

having a transfer fault, it can then be removed from the
corresponding DCcoi. When a faulty transition is found,
the analysis of observed outputs will identify the faulty
output of that transition and the search is stopped.

In order to avoid any ambiguities, the transfer sequence,
the limited characterization set and the distinguishing set
should be chosen in such a manner that they do not
involve any candidate transition in any of the DCtris or
the DCcois (i = 1, 2, ..., N) sets. Figure 2 illustrates the
progressive construction of the additional test cases needed
to distinguish the faulty transition from the rest of the
diagnostic candidates of DCtris. A similar picture would
illustrate the progressive construction of additional tests
for DCCO~S.

The construction of the additional tests is progressive
because if the faults are located, the rest of these additional
tests need not be generated, since we work under the
single transition faults hypothesis. If some of the
generated tests are already included in the initially given
test suite, this will be taken into consideration for the
analysis of the obtained outputs, but they need not be
applied again to the IUT. If the application of these
additional tests generates the expected outputs, the
transition is declared correct and is removed from the
corresponding diagnostic candidate set. When a faulty
transition is found, the analysis of the observed outputs
identify the wrong transfer and/or the wrong output of the
transition and the search is stopped.

2.1 W

Notes:
1) s fs, ss .Is, es .'s and esi . 's are states in the machine.
2) ct is a d candidate tranditions
3) each Pi is a transfer sequence from the initial state to the starting state of cti
4) The input sequence in each path in the tree represents a possible additional
diagnostic test for a specific candidate transition and a specific ending state.
5) Solid lines transitions indicate the predicted behavior of the diagnostic candidates
(no fault case).
6) Each subtree starting with Pi represents additional tests for transition tci
7) The set of sequences { w i,l. . wi,+] distinguishes between the states esi,l. . . esi,mi
in the EndStatesi for candidate transition ct i

Figure 2 : Construction of additional diagnostic tests

164

Input
Spec. transitions
Expected output t Observed output

R, al , c'3, cl, t2, x3,
tr, tl , t"1, t6t'l, t'6t1'4, t"5t7
-, c'l, a3, a2, b3, d l
-, c'l, a3, a2, b3, c'l

tcl I tc2

R, al, c'2, d'2, c'3, x3, f l
-, tl , t'l, t'4, t"1, t"5t4, t5t"l
-, c'l, a2, b2, a3, d l , a3
-, c'l, a2, b2, a3, d'l, a3

I

Case 5: One of the ustsetis contains the usti transition
and one or more of the other sets have more than one
element. In such a case, we first check the ust' transition
by generating for it one (or several) additional test case@)
depending on the corresponding stutout set is empty or
not. If stutout is empty and outputs contains one element,
then only one additional test is needed. This test should
not imply the execution of any transition in the sets
DCtrls and DCco's (i = 1, 2, ..., N). It should terminate
by the input of usti. If its application generates the
expected output, then the usti is declared correct and the
search for the faulty transition in the other sets has to be
done as in Case 4, otherwise, usti is the transition with
an output fault and the search stopped. If the set stutout
which corresponds to the ustl transition, is not empty,
then additional tests should first be selected for ust' using
the algorithm in Step (a) of Case 4. If these tests confirm
the correctness of the ust' transition, we select additional
tests for the transitions in the other sets using the
algorithms in Case 4.

4. An application example

Suppose that we are given the three CFSMs
specification (implementation) shown in Figure 1. We
execute the diagnostic algorithm presented in Section 3
with the following test suite:
TS = (R, a1, ~ ' 3 , c1, t2, x3; R, a l , ~ ' 2 , &, ~ ' 3 , x3, f1)
Step 1 and 2: The application of TS to the
specification and the implementation (i.e. equals to the
specification with the exception of transition t"4 which
has a transfer fault) of Figure 1, yields the expected and
observed output sequences, as shown in Table 1.

In Table 1, a reset transition tr is used. It is assumed to
be available for both the specification and the
implementation. It resets all machines in the system to
their initial states. We use the symbol "R" to denote the
input for such a transition and the symbol "-" to denote
its output.
Step 3: A difference between observed and expected
outputs is detected for test case tcl. Therefore, the
symptom is: "Sympl = (0 ~ 1 ~ 6 f 611,6)yy with the
symptom transition t7.
Step 4: Corresponding to the above symptom, we
generate a conflict set for each machine in the system:

Confl1 = (t l , 6, t7), Conf21 = (t'1, t'6), ~ o n f 3 1 =

Step 5A: Since there is only one conflict set for each
machine, no intersection is needed. The three initial sets
of tentative candidates for the three machines are the
following: I T C ~ = (t l , b, t71, I T C ~ = (t'1, t'6),

Step 5B: For each ITCi (i =1, 2), we generate its
corresponding FrCtri, lTCcoi and the ustseti sets:

Frctrl = (tl, tt;) , ustsetl = (t7). FTccol = (Q)
FTCU~ = (t* 1 1, ustset2 = (1, FTCCO~ = (t'6)
F T C ~ = (t"1, t1'4 , ustset2 = (, FTCCO~ = (t''5
The processing of the above sets and the computation

of the outputs and the ending state sets for the transitions
in FTCtris and FTCcois (i =1, 2,3) leads to:

(t"1, t"4, t 3)

I T C ~ = (titl, tip4, tit5)

ustsetl = (t7).
EndStates[tl] = (), Endstates[$] = () outputs[@ = ()
ustset2= (),
EndStates[t'1] = () , OUtpUts[t'(j] = () ,
ustset3= (),
EndStates[t"l] = (), EndStates[t"4] = (so) outputs[t"5]

= (a),
Step 5C: The transitions with empty ending state sets
or empty output sets are correct, therefore they are
removed from their final tentative candidate sets. The
resulting diagnostic candidate sets are the following:

D C W ~ = (1, ustsetl = (t7), col = (1
DC$= (),ustset2= (),Dcc$= (1

With the use of the ending state sets and the outputs
sets generated in Step 5B, the following diagnoses are
Qeduced:
Diagl: t7 might have the output fault of c' instead of d'.
Diag2: t"4 might transfer to state instead of state SI.
Diag3: '"5 might have an output fault of a instead of b.
Step 6: In order to reduce the number of these diagnoses,
additional diagnostic tests have to be selected. Since
output faults are in general easier to be tested and require
less tests, we start with Diagl . As indicated in the
proposed algorithm, other diagnostic candidates have to be
avoided from the path of transitions executed by the
additional test case. A possible transfer sequence which
will take the machine M1 to the starting state s2 of t7 is

DCtr3 = (t"4), ustset3 = () , DCco3 = (t"5)

165

"R, clft. We concatenate this sequence with the input of
t7. The execution of the resulting additional test "R, c1,
bl"generates the output sequence 'I-, a2, d'l''. This result
confirms the correctness of t7 in M1 and the search for the
faulty transition should be continued.

Let us consider now Diag2. A possible transfer
sequence which will take the machine M3 to the starting
state s i of t"4 is "R, c '~" . A possible sequence which will
distinguish between states so and s1 is the input "~3 ' ' .
After the application of the additional test case "R, ct3,
v3, v3", we observe 'I-, a3, b3, E ~ ' ' as output. Such a
result confirms that t"4 is faulty and transfers to state so
instead of state s1 as specified. Since it is assumed that
there is at most one fault in IUT, the fault is localized and
the remaining diagnoses are discarded.

5. Concluding discussion

In this paper, we proposed a generalized diagnostic
approach for deterministic systems represented by
CFSMs. We showed that even for a single transition
faults (output and/or transfer) hypothesis, a lot of work
needs to be done for its diagnosis. The main advantage of
the diagnostic approach is the need of shorter test suites
for localizing detected faults. The optimization factor
comes from the fact that only suspicious transitions
requires additional tests, rather than every transition in the
CFSMs, such as done in existing test selection methods
with a strong diagnostic power (i.e., W or DS methods
for single deterministic FSMs).

Many important questions are left for future work, such
as the diagnostic of distributed systems which are
represented by CFSMs and have non-deterministic
behaviors. The non-determinism can be caused by the
absence of synchronization between the different ports of
the different machines of the distributed system. The
extension of the CFSMs fault model is also recommended
to cover, for example, addressing faults which are not
considered in this paper. Another important question is
the diagnostics of systems having multiple faults, which
is known to be a very difficult problem. A possible
starting point is to try to solve such a question for at least
some special classes of multiple faults.

Acknowledgments: The authors would like to thank
G. Luo for discussions on the CFSMs model introduced
in this paper. This work was partly supported by the
Natural Sciences and Engineering Research Council of
Canada, the Ministry of Education of Qutbec and the
IDACOM-NSERC-CWARC Industrial Research Chair on
Communication Protocols.

References
[I] G.v. Bochmann, et al., "Fault models in testing",

Invited paper in 4-th IWPTS, Leidschendam,
Holland, 15 - 17 Oct. 1991.

T.S. Chow, "Testing Design Modelled by Finite-
State Machines", IEEE Trans. SE. 4,3, 1978.
R. Davis, et al., "Model-based reasoning:
Troubleshooting", in: Exploring Artificial
Intelligence, edited by Shrobe, H. E., pp. 297-346,
Morgan Kaufman, 1988.
S . Fujiwara, et al., "Test selection based on finite
state models", IEEE Trans. on SE, Vol. 17, No. 6,
June 1991, pp. 591-603.
M.R. Genesereth, "The use of design descriptions in
automated diagnosis", Artificial Intelligence 24(3),
1984, pp. 41 1-436.
A. Ghedamsi et al., "Test result analysis and
diagnostics for finite state machines", Proc. of the
1 2 4 ICDCS, Yokohama, Japan, June 9-12, 1992,

A. Ghedamsi et al., "Diagnostic tests for
communicating finite state machines", to appear in
the Proc. of the IPCCC-93, Scottsdale, USA,

G. Goenenc, "A method for the design of fault
detection experiments", IEEE Trans. Computer,
Vol. C-19, pp. 551-558, June 1970.
D. Harel, "Statecharts: a visual formalism for
complex systems", Science of Computer
Programming, 8, 1987.
C.A.R. Hoare, "Communicating sequential
processes", Comm. ACM 21, 1978, pp. 666-677.
J. de Kleer, and B.C. Williams, "Diagnosing
multiple faults", Artificial Intelligence 32(1). 1987,

J. de Kleer, and B. C. Williams, Diagnosing with
behavioral models, Proceedings IJCAI, Detroit-
Michigan, !989, pp. 1324-1330.
G. Luo, et al., "Test generation for concurrent
programs modeled by communicating
nondeterministic finite state machines", TR 823,
DIRO, Univ. of Montreal, Montreal, Canada.
S . Naito and M. Tsunoyama, "Fault Detection for
Sequential Machines by Transition-Tours", Proc. of

R. Reiter, "A theory of diagnosis from first
principles", Artificial Intelligence 32(1). 1987, pp.

K.K. Sabnani et al., "A protocol Testing
Procedure", Computer Networks and ISDN
Systems, Vol. 15, No. 4. pp. 285-297, 1988.
B. Sarikaya, and G.v. Bochmann, Synchronization
and specification issues in protocol testing, IEEE
Trans. on Comm., Vol. COM-32, No. 4, April

H. UraI, "A Test Derivation Method for Protocol
Conformance Testing", Proc. of the 7th IFIP
Symposium on PSTV, Zurich, May 5-8 1987.
S.T. Vuong and K.C. KO, "A novel approach to
protocol test sequence generation", IEEE Glocomm,
San Diego, California, Dec. 2-5, 1990, vol. 3,

pp. 244-25 1.

March 24-26,1993.

pp. 97-130.

FTCS, pp.238-243, 1981.

57-96.

1984, pp. 389-395.

904.1.1 - 904.1.5.

166

